تعیین خرج ویژه بهینه در عملیات آتشکاری با استفاده از شبکه¬های عصبی مصنوعی

Authors

  • سید امید گیلانی دانشگاه تربیت مدرس
  • محسن صائمی دانشگاه تربیت مدرس
Abstract:

هدف اصلی در این مطالعه، بررسی کاربرد شبکه عصبی در تخمین خرج ویژه بهینه بر اساس یک‌ سری ازمشاهدات و محاسبات عددی می‌باشد. پارامترهای ورودی مورد نیاز جهت مدلسازی، شامل 12 ویژگی زمین‌شناسی و ژئومکانیکی می‌باشد. اطلاعات مورد نیاز برای این تحقیق از تونل سرریز سد کوثر جمع آوری شده است. شبکه عصبی طراحی شده در این مطالعه توسط داده‌های آموزشی و آزمایشی مورد ارزیابی قرار می‌گیرد. نتایج به دست آمده نشان می‌دهد که مدل عصبی بهینه به خوبی قادر به تخمین مقادیر خرج ویژه در تمام قسمت‌های تونل مورد مطالعه بوده و شبکه عصبی قادر به درک روابط موجود بین خرج ویژه و پارامترهای ورودی آن می‌باشد. علاوه بر این در این تحقیق، رابطه بین خرج ویژه  و پارامترهای ورودی با سه روش آنالیز حساسیت یعنی آنالیزهای تاثیر مقاومت نسبی، روش میدان کسینوسی و طراحی فاکتوریل شکست مورد تحلیل و بررسی قرار گرفته است. در این آنالیزها نه تنها عوامل تاثیرگذار بر میزان خرج ویژه مشخص می‌شود، بلکه تعاملات صورت گرفته بین آنها نیز به خوبی قابل پیش‌بینی است.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تعیین خرج ویژه بهینه در عملیات آتشکاری با استفاده از شبکه های عصبی مصنوعی

هدف اصلی در این مطالعه، بررسی کاربرد شبکه عصبی در تخمین خرج ویژه بهینه بر اساس یک سری ازمشاهدات و محاسبات عددی می باشد. پارامترهای ورودی مورد نیاز جهت مدلسازی، شامل 12 ویژگی زمین شناسی و ژئومکانیکی می باشد. اطلاعات مورد نیاز برای این تحقیق از تونل سرریز سد کوثر جمع آوری شده است. شبکه عصبی طراحی شده در این مطالعه توسط داده های آموزشی و آزمایشی مورد ارزیابی قرار می گیرد. نتایج به دست آمده نشان می...

full text

تقریب مقادیر ویژه ورق با استفاده از شبکه عصبی مصنوعی

هدف از این مقاله، تعیین فرکانس زاویه‌ای طبیعی ورق‏ها با توجه به شرایط مختلف تکیه‌گاهی به کمک شبکه عصبی مصنوعی است. یکی از مشهورترین روش‏های آموزش شبکه عصبی، استفاده از الگوریتم انتشار برگشتی است. این الگوریتم برای آموزش شبکه‌های چند لایه قابل کاربرد است. الگوریتم انتشار برگشتی بر مبنای کاهش گرادیان بوده و در آن شیب خطا به تدریج کم شده و وزن‏های شبکه برای رسیدن به حداقل خطا، تعدیل می‌شود. در این...

full text

تخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی

هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل ...

full text

تعیین ارزش دارایی‌های نامشهود با استفاده از شبکه عصبی مصنوعی

درک عوامل موثر بر ارزش شرکت برای سرمایه‌گذاران و اعتباردهندگان پیش از اتخاذ تصمیمات سرمایه‌گذاری یا اعطای تسهیلات، امری حیاتی است. از آن‌جایی که اقتصاد دانش‌محور در حال تکامل یافتن است، روش ایجاد ارزش شرکتی از شیوه سنتی مبتنی بر دارایی‌های فیزیکی به دانش نامشهود منتقل شده است. از این‌رو در آینده نه چندان دور، ارزش‌گذاری دارایی‌های نامشهود به موضوع مهمی در اقتصاد مبدل خواهد شد. این مطالعه بر آن ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 1

pages  49- 55

publication date 2006-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023